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Part 7: Work, and Energy 
 

University Physics V1 (Openstax):  Chapters 7 and 8 

Physics for Engineers & Scientists (Giancoli):  Chapter 6 
 

Work and Energy 
 

• All motion and interactions can be understood in terms of energy and the exchange of energy. 
 

• Work is derived from force (a vector), but work and energy are both scalar quantities (not 

vectors!) 
 

• Many of the problems you have been working can be solved using an energy-based approach. 
 

• In most cases, an energy-based approach to solving problems is preferable to other means. 
 

In other words, don’t go running back to kinematics on your homework! 

 

Work       𝑾 = 𝑭⃗⃗ ∙ 𝒅⃗⃗  
 

• When an object moves a distance d in the direction of an applied force, the work done by that 

force is the product of the force and the distance. 
 

 

    

 
 

  W = F∙d 

 

• The standard unit of work and energy the Joule.      1 J = 1 N∙m
 

• When an object moves a distance d NOT in the direction of an applied force, the work done is 

the product of the parallel component of the force and the distance.
 

 

 
 

W = F∥∙d = F∙d∙Cos(θ) = F⃗ ∙d⃗  
 

• This is also equivalent to multiply the applied force in full by the component of the 

distance in the direction of that force. 
 



76      UTA Physics Department -  Technical  Physics I  Lecture Notes   

 

  All Rights Reserved   

Example: Two horses pull a man on a makeshift sled.  The man and the sled have a combined mass of 

204 kg, and the force of friction between the sled and the ground is 700 N.  When the horses pull the 

sled, each of the three chains has a tension of 396 N and makes an angle of 30.0° with respect to the 

horizontal as they pull the man a distance of 20.2 m.  Determine A) the work done on the sled by one of 

the chains, B) the work done on the horses by one of the chains, and C) the work done on the sled by 

friction. 
 

 
 

A) W = F∥∙d = F∙d∙Cos(θ) = (396 N)(20.2 m)Cos(30.0°) = 6.93 kJ 
 

The positive sign on W indicates that the sled is gaining energy. 

 

 

 
 

B)  The angle between the force and the distance is now 180° ± θ 
 

W = F∥∙d = F∙d∙Cos(180° ± θ) = (396 N)(20.2 m)Cos(210.0°) = − 6.93 kJ 
 

The negative sign on W indicates that the horse is losing energy. 

The energy lost by the horse is being given to the sled.  

 

 
A) The angle between the force and the distance is now 180° 

 

W = F∥∙d = F∙d∙Cos(180°) = (700 N)(20.2 m)Cos(180°) = − 14.14 kJ 

The remaining energy absorbed by the sled is converted to motion of the sled. 

Three chains each deliver 6.93 kJ and friction removes 14.14 kJ 

Change in Energy = 3(6.93 kJ) – 14.14 kJ = 6.65 kJ 
 

As friction always opposes motion, any work done by 

friction to a moving object will always be negative. 
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Example: How much work is done by a constant force, F = (3.26 N)î + (5.67 N)ĵ, as it acts on an object 

that moves from point P1 = (1.23 m, 4.15 m) to point P2 = (2.71 m, 3.85 m)? 

 

𝑑 =  ∆𝑥𝒊̂  + ∆𝑦𝒋̂  = (𝑥2 − 𝑥1)𝒊̂  +  (𝑦2 − 𝑦1)𝒋̂  
 

𝑑 = (2.71 𝑚 − 1.23𝑚)𝒊̂  +  (3.85 𝑚 − 4.15𝑚)𝒋̂ = (1.48 𝑚)𝒊̂ + (−0.30 𝑚)𝒋̂  
 

𝑊 = 𝐹 ∙ d⃗ = {(3.26 𝑁)𝒊̂  + (5.67 𝑁)𝒋̂} · {(1.48 𝑚)𝒊̂  +  (−0.30𝑚)𝒋̂} 
 

𝑊 = (3.26 𝑁)(1.48 𝑚) + (5.67 𝑁)(−0.30𝑚) = 3.12 𝐽  

Work for Variable Forces    

•  

• For a constant force, the work may be considered to be the area created on a plot of force versus 

distance. 
 

• The same holds true for a variable force.  The work is the area under the curve when force is 

plotted against distance. 
 

     
 

• In one dimensional motion:     𝑊 = ∫ 𝐹(𝑥)𝑑𝑥
𝑥2

𝑥1
 

 

• In higher dimensional motion:     𝑊 = ∫ 𝐹 ∙ 𝑑𝑟 
𝑃2

𝑃1
 

• W is the work done 

• P1 is the starting point  

• P2 is the ending point 

• 𝐹  is the force vector, which is a function of position. 

• 𝑑𝑟  is an infinitesimal displacement vector 

• 𝐹 ∙ 𝑑𝑟  is a vector dot-product 

 

Example: An object moves from the origin to x = 1.53 m under the influence of a single force given by 

F(x) = (2.54 N/m2)x2 + (7.95 N/m)x + (16.95 N).  Determine the work done by the force. 
 

𝑊 = ∫ 𝐹(𝑥)𝑑𝑥
𝑥2

𝑥1

= ∫ (𝛼𝑥2 + 𝛽𝑥 +  𝛾)𝑑𝑥
1.53 𝑚

0

= {
𝛼

3
𝑥3 +

𝛽

2
𝑥2 + 𝛾𝑥}

0

1.53 𝑚

 

 

𝑊 = 
(2.54 

𝑁
𝑚2)

3
(1.53 𝑚)3 +

(7.95
𝑁
𝑚)

2
(1.53 𝑚)2 + (16.95 𝑁)(1.53 𝑚) = 38.3 𝐽 
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Example: An object moves from the origin to point P = (1.12 m, 1.74 m) under the influence of a single 

force F(x,y) = {(3.17 N/m)x}î + {(1.15 N/m2)y2 + (9.41 N)}ĵ.  Determine the work done by the force. 

 

𝑊 = ∫ 𝐹 ∙ 𝑑𝑟 
𝑃2

𝑃1

= ∫ (𝐹𝑥 𝑖̂ + 𝐹𝑦𝑗̂) ∙ (𝑑𝑥𝑖̂ + 𝑑𝑦𝑗̂)
𝑃2

𝑃1

= ∫ 𝐹𝑥𝑑𝑥
𝑥2

𝑥1

+ ∫ 𝐹𝑦𝑑𝑦
𝑦2

𝑦1

 

 

𝑊 =  ∫ 𝛼𝑥𝑑𝑥
1.12𝑚

0

+ ∫ {𝛽𝑦2 + 𝛾}𝑑𝑦
1.74 𝑚

0

= {
𝛼

2
𝑥2}

0

1.12 𝑚

+ {
𝛽

3
𝑦3 + 𝛾𝑦}

0

1.74 𝑚

 

 

𝑊 =
(3.17

𝑁
𝑚

)

2
(1.12 𝑚)2 + 

(1.15
𝑁
𝑚2)

3
(1.74 𝑚)3 + (9.41 𝑁)(1.74 𝑚) = 20.4 𝐽 

 

Kinetic Energy      𝑲𝑬 =  
𝟏

𝟐
𝒎𝒗𝟐 

• Kinetic energy is the energy an object possesses due to its motion. 
 

𝑊 = ∫ 𝐹(𝑥)𝑑𝑥
𝑥2

𝑥1

= ∫ 𝑚𝑎 ∙ 𝑑𝑥
𝑥2

𝑥1

= ∫ 𝑚 ∙
𝑑𝑣

𝑑𝑡
∙ 𝑑𝑥

𝑥2

𝑥1

= ∫ 𝑚 ∙
𝑑𝑥

𝑑𝑡
∙ 𝑑𝑣

𝑥2

𝑥1

 

 

Remember, dv and dx are just numbers and can be swapped, 

infinitesimally small, but numbers nonetheless. 
 

𝑊 = ∫ 𝑚𝑣 ∙ 𝑑𝑣
𝑣2

𝑣1

= {
1

2
𝑚𝑣2}

𝑣1

𝑣2

= 
1

2
𝑚𝑣2

2 − 
1

2
𝑚𝑣1

2 

 

• We define kinetic energy to be:   𝐾𝐸 = 
1

2
𝑚𝑣2  

 

• This derivation suggests that any work done to an object results in a change in kinetic energy. 

This is valid when all the forces acting on an object are accounted for. 
 

𝑊 = ∆𝐾𝐸 = 
1

2
𝑚𝑣2

2 − 
1

2
𝑚𝑣1

2 
 

• While this view is conceptually clearer, it is mathematically equivalent to the kinematics done 

previously (simply multiply an equation by ½m). 
 

𝑣2 = 𝑣0
2 + 2𝑎(𝑥 − 𝑥0)      

1

2
𝑚𝑣2 = 

1

2
𝑚𝑣0

2 + 𝑚𝑎(𝑥 − 𝑥0) 
 

1

2
𝑚𝑣2 − 

1

2
𝑚𝑣0

2 = 𝑚𝑎(𝑥 − 𝑥0) = 𝐹𝑑 = 𝑊 

 

Example: A 5.00 kg bald eagle is initially gliding horizontally at a speed of 11.3 m/s.  It begins flapping 

its wings, generating a horizontal force of 19.6 N.  How fast is the Eagle flying when it stops flapping its 

wings after a distance of 21.3 m?? 
 

𝑊 = ∆𝐾𝐸        𝐹𝑑 =  
1

2
𝑚𝑣2 − 

1

2
𝑚𝑣0

2        2𝐹𝑑 =  𝑚𝑣2 −  𝑚𝑣0
2        

2𝐹𝑑

𝑚
=  𝑣2 − 𝑣0

2 
 

𝑣2 = 𝑣0
2 + 

2𝐹𝑑

𝑚
        𝑣 =  √𝑣0

2 + 
2𝐹𝑑

𝑚
= √(11.3

𝑚

𝑠
)
2

+ 
2(19.6𝑁)(21.3𝑚)

5.00 𝑘𝑔
= 17.2

𝑚

𝑠
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Gravitational Potential Energy   UG = mgh    

 

• When an object moves against the force of gravity, the work done lifting it becomes stored in the objects 

position (gravitational potential energy). 

 

• When that object is released, the entirety of the stored energy is converted back into kinetic energy as it 

falls (assuming friction/wind resistance is not present). 

 

• By definition, the potential energy of a force (U) differs by a negative sign from the work done moving 

against that force. 

 

𝑈 = −𝑊 

 

• On the surface of the Earth, the gravitational force is effectively constant and equal to an object’s weight     

(F = mg).  Moving upward, the distance it moves would be the change in height.  The force of gravity is 

directed opposite to the motion. 

 

𝑈𝑔 = −𝑊𝑔 = −𝐹𝑔 ∙ 𝑑 ∙ 𝐶𝑜𝑠(𝜃) =  −𝑚𝑔 ∙ ℎ ∙ 𝐶𝑜𝑠(180°) = 𝑚𝑔ℎ 

 

• As we can choose to place our coordinate axis anywhere we desire, the gravitational potential energy of 

an object may vary with our choice of origin.  Consequently, gravitational potential energy doesn’t have 

an absolute value.  Only the change in potential energy is relevant. 

 

Conservation of Energy      

 

• Energy is neither created nor destroyed.  It only changes from one form to another. 

 

• If work is done to an object due to external forces, it must be converted into either kinetic energy or 

potential energy (or some of both). 

 

𝑊𝑁𝐶 = ∆𝐾𝐸 + ∆𝑈 

 

∆𝐾𝐸 =
1

2
𝑚𝑣2 −

1

2
𝑚𝑣0

2          ∆𝑈 = 𝑚𝑔𝑦 − 𝑚𝑔𝑦0 

  

• The work done by non-conservative forces (WNC) includes any energy added by applied forces as 

well as energy lost due to friction.  Gravity is excluded as it is a conservative force and is covered 

under potential energy. 

 

• Conservative forces are those where the work done moving from one point to another does not 

depend on the path.  Any work done by these forces is stored as potential energy (which might be 

returned later). 

 

• It can be useful to rearrange this equation to find:    𝑬𝒊𝒏𝒊𝒕 + 𝑬𝒂𝒅𝒅𝒆𝒅 = 𝑬𝒇𝒊𝒏𝒂𝒍 

 

𝑊𝑁𝐶 = ∆𝐾𝐸 + ∆𝑈 = (𝐾𝐸𝑓𝑖𝑛𝑎𝑙 − 𝐾𝐸𝑖𝑛𝑖𝑡) + (𝑈𝑓𝑖𝑛𝑎𝑙 − 𝑈𝑖𝑛𝑖𝑡)  

 

𝑊𝑁𝐶 = (𝐾𝐸𝑓𝑖𝑛𝑎𝑙 + 𝑈𝑓𝑖𝑛𝑎𝑙) − (𝐾𝐸𝑖𝑛𝑖𝑡 + 𝑈𝑖𝑛𝑖𝑡) =  𝐸𝑓𝑖𝑛𝑎𝑙 − 𝐸𝑖𝑛𝑖𝑡 

 

𝐸𝑖𝑛𝑖𝑡 + 𝑊𝑁𝐶 = 𝐸𝑓𝑖𝑛𝑎𝑙        𝐸𝑖𝑛𝑖𝑡 + 𝐸𝑎𝑑𝑑𝑒𝑑 = 𝐸𝑓𝑖𝑛𝑎𝑙 
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• The variable time does not show up directly in any form of energy.  Any problem that includes motion 

without a collision and makes no mention of time is a good candidate to solve using conservation of 

energy. 

 

• Energy lost due to friction is not actually lost, but rather it is transformed in heat (molecular 

vibrations). 

 

Solving Problems with Conservation of Energy      
 

• You only need to consider the initial and final states.  Intermediate states are irrelevant. 
 

• When you determine the initial and final energies, make sure to include every form of energy 

present. 
 

• Anything in motion will have kinetic energy. 
 

• Anything not at ground level (or where you decided to place y=0) will have gravitational 

potential energy. 
 

• Make sure to traverse the path in between the initial and final positions to include anything that 

adds or removes energy to find Eadded (WNC). 
 

• Any friction forces will remove energy. 
 

• Other applied forces may add or subtract energy. 
 

• Gravity is accounted for with potential energy (don’t include that with Eadded). 
 

 

Example: A woman drops a small rock off a balcony 10.2 m above the ground.  Assuming wind 

resistance is negligible, how fast is the rock moving just before it hits the ground? 
 

 

We will set y = 0 to be at ground level. 
 

Note: Setting y = 0 to occur at ground level is typically the most 

‘comfortable’ thing to do.  However, you may find that matching y = 0 to 

your lowest object is preferable.  In this problem, both give the same origin. 
 

𝐸𝑖𝑛𝑖𝑡 = 𝑚𝑔ℎ        𝐸𝑓𝑖𝑛𝑎𝑙 =
1

2
𝑚𝑣2        𝐸𝑎𝑑𝑑𝑒𝑑 = 0 

 

𝐸𝑖𝑛𝑖𝑡 + 𝐸𝑎𝑑𝑑𝑒𝑑 = 𝐸𝑓𝑖𝑛𝑎𝑙        𝑚𝑔ℎ =
1

2
𝑚𝑣2        

 

𝑔ℎ =
1

2
𝑣2        2𝑔ℎ = 𝑣2 
 

𝑣 =  √2𝑔ℎ =  √2 (9.80
𝑚

𝑠2
) (10.2 𝑚) = √199.92

𝑚2

𝑠2
= 14.1

𝑚

𝑠
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Example: A woman throws a small rock off a balcony 10.2 m above the ground.  The initial velocity is 

8.08 m/s and directed 30.0° above the horizon.  Assume wind resistance is negligible.  Determine A) the 

speed of the rock just before it hits the ground, and B) the maximum height of the rock. 
 

 

We will set y = 0 to be at ground level. 
 

Part A:        
 

𝐸𝑖𝑛𝑖𝑡 = 𝑚𝑔ℎ +
1

2
𝑚𝑣0

2        𝐸𝑓𝑖𝑛𝑎𝑙 =
1

2
𝑚𝑣2        𝐸𝑎𝑑𝑑𝑒𝑑 = 0 

 

𝐸𝑖𝑛𝑖𝑡 + 𝐸𝑎𝑑𝑑𝑒𝑑 = 𝐸𝑓𝑖𝑛𝑎𝑙        𝑚𝑔ℎ +
1

2
𝑚𝑣0

2 =
1

2
𝑚𝑣2  

 

𝑔ℎ +
1

2
𝑣0

2 =
1

2
𝑣2        2𝑔ℎ + 𝑣0

2 = 𝑣2 
 

𝑣 =  √2𝑔ℎ + 𝑣0
2 = √2 (9.80

𝑚

𝑠2
) (10.2 𝑚) + (8.08

𝑚

𝑠
)
2

 

 

𝑣 = √265.2064
𝑚2

𝑠2
= 16.3

𝑚

𝑠
 

 

 

Part B:        𝐸𝑖𝑛𝑖𝑡 = 𝑚𝑔ℎ0 +
1

2
𝑚𝑣0

2        𝐸𝑓𝑖𝑛𝑎𝑙 = 𝑚𝑔ℎ +
1

2
𝑚𝑣2        𝐸𝑎𝑑𝑑𝑒𝑑 = 0 

 

𝑣𝑦 = 0        𝑣 =  𝑣𝑥 = 𝑣0𝑥 = 𝑣0 ∙ 𝐶𝑜𝑠(𝜃) = (8.08
𝑚

𝑠
) cos(30.0°) = 6.9975

𝑚

𝑠
   

 

𝐸𝑖𝑛𝑖𝑡 + 𝐸𝑎𝑑𝑑𝑒𝑑 = 𝐸𝑓𝑖𝑛𝑎𝑙        𝑚𝑔ℎ0 +
1

2
𝑚𝑣0

2 = 𝑚𝑔ℎ +
1

2
𝑚𝑣2        𝑔ℎ0 +

1

2
𝑣0

2 = 𝑔ℎ +
1

2
𝑣2  

 

𝑔ℎ0 +
1

2
𝑣0

2 −
1

2
𝑣2 =  𝑔ℎ         ℎ0 +

𝑣0
2

2𝑔
−

𝑣2

2𝑔
=  ℎ          ℎ = ℎ0 +

𝑣0
2−𝑣2

2𝑔
 

 

 

ℎ = ℎ0 +
𝑣0

2 − 𝑣2

2𝑔
=  10.2 𝑚 +

(8.08
𝑚
𝑠 )

2

− (6.9975
𝑚
𝑠 )

2

2 (9.80
𝑚
𝑠2)

= 11.0 𝑚 

 

Alternatively:   𝑣0
2 − 𝑣2 = (𝑣0𝑥

2 + 𝑣0𝑦
2 ) − 𝑣0𝑥

2 = 𝑣0𝑦
2   

 

𝑣0𝑦 = 𝑣0 ∙ sin(𝜃) =  (8.08
𝑚

𝑠
) ∙ sin(30.0°) =  4.04

𝑚

𝑠
    

 

ℎ = ℎ0 +
𝑣0

2 − 𝑣2

2𝑔
= ℎ0 +

𝑣0𝑦
2

2𝑔
=  10.2 𝑚 +

(4.04
𝑚
𝑠 )

2

2 (9.80
𝑚
𝑠2)

= 11.0 𝑚 
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Example: Initially a crate is sliding on a horizontal surface at 13.7 m/s.  The crate moves a distance of 

27.36 m before coming to rest.  Determine the coefficient of kinetic friction between the crate and the 

surface. 
 

 
 

𝐸𝑖𝑛𝑖𝑡 =
1

2
𝑚𝑣0

2        𝐸𝑓𝑖𝑛𝑎𝑙 = 0        𝐸𝑎𝑑𝑑𝑒𝑑 = −𝐹𝐹𝑑 =  −𝜇𝑘𝑁𝑑 = −𝜇𝑘𝑚𝑔𝑑 
 

Note: As there are only two vertical forces (N and W) that must cancel, N=W=mg 
 

𝐸𝑖𝑛𝑖𝑡 + 𝐸𝑎𝑑𝑑𝑒𝑑 = 𝐸𝑓𝑖𝑛𝑎𝑙        
1

2
𝑚𝑣0

2 − 𝜇𝑘𝑚𝑔𝑑 = 0        
1

2
𝑚𝑣0

2 = 𝜇𝑘𝑚𝑔𝑑        
1

2
𝑣0

2 = 𝜇𝑘𝑔𝑑 
 

𝜇𝑘 =
𝑣0

2

2𝑔𝑑
=

(13.7
𝑚
𝑠 )

2

2 (9.80
𝑚
𝑠2) (27.36 𝑚)

= 0.350 

 

Example: Initially a crate is at rest at the top of a 30.0° incline.  The coefficient of kinetic friction 

between the crate and the surface is 0.300.  How fast is the crate moving after sliding 6.00 m down the 

incline? 
 

We will set y = 0 to be at ground level. 
 

    
 

𝐸𝑖𝑛𝑖𝑡 = 𝑚𝑔ℎ = 𝑚𝑔𝑑 ∙ sin(30.0°) =
1

2
𝑚𝑔𝑑             𝐸𝑓𝑖𝑛𝑎𝑙 =

1

2
𝑚𝑣2 

 

The weight (W) does work, but this is not included in Eadded as it is already covered with potential energy. 
 

The normal force (N) doesn’t do any work as it is perpendicular to the direction of motion. 
 

 

𝐸𝑎𝑑𝑑𝑒𝑑 = −𝐹𝐹𝑑 =  −𝜇𝑘𝑁𝑑 = −𝜇𝑘𝑊𝑦𝑑 = −𝜇𝑘𝑚𝑔𝑑 cos 𝜃 
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𝐸𝑖𝑛𝑖𝑡 + 𝐸𝑎𝑑𝑑𝑒𝑑 = 𝐸𝑓𝑖𝑛𝑎𝑙             
1

2
𝑚𝑔𝑑 − 𝜇𝑘𝑚𝑔𝑑 cos 𝜃 =  

1

2
𝑚𝑣2 

 

𝑚𝑔𝑑 − 2𝜇𝑘𝑚𝑔𝑑 cos 𝜃 =  𝑚𝑣2          𝑔𝑑 − 2𝜇𝑘𝑔𝑑 cos 𝜃 =  𝑣2          𝑣2 = 𝑔𝑑(1 − 2𝜇𝑘 cos 𝜃) 
 

𝑣 = √𝑔𝑑(1 − 2𝜇𝑘 cos 𝜃)  =  √(9.80
𝑚

𝑠2
) (6.00 𝑚){1 − 2(0.300) cos(30.0°)} = 5.31

𝑚

𝑠
 

 

Springs and Hooke’s Law      
 

• Springs will naturally return to their initial (equilibrium) position after being stretched or 

compressed.  A force that does this can be referred to as a Restoring Force.   
 

• There are limits to how far springs can be stretched or compressed before losing their ability to 

stretch and becoming permanently deformed.  This is called the Elastic Limit of the spring. 
 

• With springs it is typical to use x as the change in length from equilibrium (equal to the 

displacement of the end) with it stretching into the positive axis and compressing into the 

negative axis. 
 

         
 

• Hooke’s Law:        𝐹𝑥 = −𝑘𝑥 

 

• The negative sign indicates that the force points opposite the direction of displacement. 

 

• The spring constant, k, is only valid for a specific spring (not a universal constant). 

 

• Hooke’s Law is only a first order linear approximation.  Many springs will deviate from 

Hooke’s Law before reaching the elastic limit. 

 

• Solid surfaces typically obey Hooke’s law (albeit with very large spring constants).  A 

very slight compression creates a large restoring force.  This allows the normal force to 

take whatever value it needs to be. 

 

• Hooke’s Law also applies to other objects that behave elastically. 

 

• Elastic Potential Energy:        𝑈𝑠𝑝 =
1

2
𝑘𝑥2 

 

• 𝑈𝑠𝑝 = −𝑊𝑠𝑝 = − ∫ 𝐹𝑠𝑝(𝑥)𝑑𝑥
𝑥

0
= − ∫ (−𝑘𝑥)𝑑𝑥

𝑥

0
=  𝑘 ∫ (𝑥)𝑑𝑥

𝑥

0
=   𝑘 {

1

2
𝑥2}

0

𝑥

= 
1

2
𝑘𝑥2 

 

• When using conservation of energy, it is preferable to include the elastic potential energy 

of springs rather than include it as work from an applied force (as you will just have to do 

this integral again). 
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Example: An archer pulls the bowstring back 42.0 cm and fires a 65.0 g arrow at 57.5 m/s.  Determine 

the maximum height the arrow can reach if the archer pulls the bowstring back 50.0 cm. 
 

For objects that obey Hooke’s Law, the dynamic characteristics of that object have been reduced to a single 

quantity, the spring constant.  If you don’t know the spring constant of the object, you’ll need to find that first. 
 

𝐸𝑖𝑛𝑖𝑡 =
1

2
𝑘𝑥1

2        𝐸𝑓𝑖𝑛𝑎𝑙 =
1

2
𝑚𝑣2        𝐸𝑎𝑑𝑑𝑒𝑑 = 0 

 

𝐸𝑖𝑛𝑖𝑡 + 𝐸𝑎𝑑𝑑𝑒𝑑 = 𝐸𝑓𝑖𝑛𝑎𝑙        
1

2
𝑘𝑥1

2 =
1

2
𝑚𝑣2          𝑘𝑥1

2 = 𝑚𝑣2         
 

𝑘 =
𝑚𝑣2

𝑥1
2 = 

(0.0650 𝑘𝑔) (57.5
𝑚
𝑠 )

2

(0.420 𝑚)2
= 1218.3

𝑁

𝑚
 

 

Now that we have the spring constant, we can look for the height. 
 

𝐸𝑖𝑛𝑖𝑡 =
1

2
𝑘𝑥2

2        𝐸𝑓𝑖𝑛𝑎𝑙 = 𝑚𝑔ℎ        𝐸𝑎𝑑𝑑𝑒𝑑 = 0 
 

𝐸𝑖𝑛𝑖𝑡 + 𝐸𝑎𝑑𝑑𝑒𝑑 = 𝐸𝑓𝑖𝑛𝑎𝑙        
1

2
𝑘𝑥2

2 = 𝑚𝑔ℎ 
 

          ℎ =  
𝑘𝑥2

2

2𝑚𝑔
= 

(1218.3
𝑁

𝑚
)(0.500 𝑚)2

2(0.0650 𝑘𝑔)(9.80
𝑚

𝑠2
)
= 239 𝑚         

 

Example: A worker pushes a crate up a 30.0° incline by delivering a 10.0 N force.  The coefficient of 

kinetic friction between the crate and incline is 0.200.  If the crate starts from rest and weighs 10.0 N, 

how fast is the crate moving after it traverses a distance of 3.00 m along the incline? 
 

     
 

𝐸𝑖𝑛𝑖𝑡 = 0             𝐸𝑓𝑖𝑛𝑎𝑙 =
1

2
𝑚𝑣2 + 𝑚𝑔ℎ 

 

The weight (W) does work, but this is not included in Eadded as it is already covered with potential energy. 
 

The normal force (N) doesn’t do any work as it is perpendicular to the direction of motion. 
 

 

𝐸𝑎𝑑𝑑𝑒𝑑 = 𝐹𝐴𝑝𝑝𝑑 − 𝐹𝐹𝑑        𝐹𝐹𝑑 =  𝜇𝑘𝑁𝑑 = 𝜇𝑘𝑊𝑦𝑑 = 𝜇𝑘𝑚𝑔𝑑 cos 𝜃 
 

𝐸𝑖𝑛𝑖𝑡 + 𝐸𝑎𝑑𝑑𝑒𝑑 = 𝐸𝑓𝑖𝑛𝑎𝑙        𝐹𝐴𝑝𝑝𝑑 − 𝜇𝑘𝑚𝑔𝑑 cos 𝜃 =  
1

2
𝑚𝑣2 + 𝑚𝑔ℎ 

 

𝐹𝐴𝑝𝑝𝑑 − 𝜇𝑘𝑚𝑔𝑑 cos 𝜃 =  
1

2
𝑚𝑣2 + 𝑚𝑔𝑑 sin 𝜃        𝐹𝐴𝑝𝑝𝑑 − 𝜇𝑘𝑚𝑔𝑑 cos 𝜃 − 𝑚𝑔𝑑 sin 𝜃 =  

1

2
𝑚𝑣2 
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2𝐹𝐴𝑝𝑝𝑑 − 2𝜇𝑘𝑚𝑔𝑑 cos 𝜃 − 2𝑚𝑔𝑑 sin 𝜃 =  𝑚𝑣2 
 

2𝐹𝐴𝑝𝑝𝑑

𝑚
− 2𝜇𝑘𝑔𝑑 cos 𝜃 − 2𝑔𝑑 sin 𝜃 =  𝑣2        

2𝐹𝐴𝑝𝑝𝑔𝑑

𝑊
− 2𝜇𝑘𝑔𝑑 cos 𝜃 − 2𝑔𝑑 sin 𝜃 =  𝑣2 

 

2𝑔𝑑 (
𝐹𝐴𝑝𝑝

𝑊
− 𝜇𝑘cos 𝜃 − sin 𝜃) =  𝑣2        𝑣 = √2𝑔𝑑 (

𝐹𝐴𝑝𝑝

𝑊
− 𝜇𝑘cos 𝜃 − sin 𝜃)  

 

𝑣 =  √2(9.80
𝑚

𝑠2
) (3.00 𝑚) (

10.0 𝑁

10.0 𝑁
− (0.200) cos(30.0°) − sin(30.0°)) = 4.38

𝑚

𝑠
 

 

Example: A distribution center has an interesting system for moving crates.  A mechanism compresses 

a spring (k = 310.0 N/m) by 1.00 m.  A 10.0 kg crate is then placed in front of the spring, which is then 

triggered sending the crate on its way.  It falls a height of 4.00 m as it moves down a 30.0° incline before 

leveling off.  The entire surface is frictionless except for a 5.00 m long stretch down the incline where 

the coefficient of friction is 0.200.  How fast is the crate moving at the bottom of the incline? 

 

         
 

𝐸𝑖𝑛𝑖𝑡 =
1

2
𝑘𝑥2 + 𝑚𝑔ℎ             𝐸𝑓𝑖𝑛𝑎𝑙 =

1

2
𝑚𝑣2 

 

 

𝐸𝑎𝑑𝑑𝑒𝑑 = −𝐹𝐹𝑑 =  −𝜇𝑘𝑁𝑑 = −𝜇𝑘𝑊𝑦𝑑 = −𝜇𝑘𝑚𝑔𝑑 cos 𝜃  
 

𝐸𝑖𝑛𝑖𝑡 + 𝐸𝑎𝑑𝑑𝑒𝑑 = 𝐸𝑓𝑖𝑛𝑎𝑙        
1

2
𝑘𝑥2 + 𝑚𝑔ℎ − 𝜇𝑘𝑚𝑔𝑑 cos 𝜃 =  

1

2
𝑚𝑣2 

 

𝑘𝑥2 + 2𝑚𝑔ℎ − 2𝜇𝑘𝑚𝑔𝑑 cos 𝜃 =  𝑚𝑣2        
𝑘

𝑚
𝑥2 + 2𝑔ℎ − 2𝜇𝑘𝑔𝑑 cos 𝜃 =  𝑣2 

 

𝑣 =  √
𝑘

𝑚
𝑥2 + 2𝑔ℎ − 2𝜇𝑘𝑔𝑑 cos 𝜃 

 

𝑣 =  √
310

𝑁

𝑚

10.0 𝑘𝑔
(1.00𝑚)2 + 2(9.80

𝑚

𝑠2) (4.00 𝑚) − 2(0.200) (9.80
𝑚

𝑠2) (5.00 𝑚) cos(30°) = 9.61 m/s 

 

Power       
 

• We define Average Power as:   𝑃𝑎𝑣𝑔 = 
∆𝑊

∆𝑡
= 

∆𝐸

∆𝑡
= 

𝐸𝑓𝑖𝑛𝑎𝑙−𝐸𝑖𝑛𝑖𝑡

𝑡𝑓𝑖𝑛𝑎𝑙−𝑡𝑖𝑛𝑖𝑡
 

     

• and Instantaneous Power as:   𝑃 =  
𝑑𝑊

𝑑𝑡
= 

𝑑𝐸

𝑑𝑡
 

 

• Power is defined using work, but the definition applies to any form of energy. 
 

• The units of power are the Watt (W):  1 W = 1 J/s 
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• If the power is being delivered by a constant force:     𝑃 =  𝐹𝑣      𝑃 = 
𝑑𝑊

𝑑𝑡
=

𝐹∙𝑑𝑥

𝑑𝑡
= 𝐹

𝑑𝑥

𝑑𝑡
= 𝐹𝑣 

 

• Kilowatt·Hour (kwh) is a unit of energy:     1 𝑘𝑊 ∙ 𝐻𝑟 =  (1000 𝑊)(3600 𝑠) = 3.6 × 106 𝐽 
 

Example: A low-flying eagle with mass 4.50 kg increases its velocity from 11.3 m/s to 17.2 m/s over a 

15.0 second time interval.  Over the same time its altitude increases from 1.50 m to 7.75 m.  What 

average power must the eagle’s wings deliver to accomplish this? 
 

𝐸𝑖𝑛𝑖𝑡 =
1

2
𝑚𝑣0

2 + 𝑚𝑔ℎ0             𝐸𝑓𝑖𝑛𝑎𝑙 =
1

2
𝑚𝑣2 + 𝑚𝑔ℎ 

 

𝑃𝑎𝑣𝑔 =
∆𝐸

∆𝑡
=  

𝐸𝑓𝑖𝑛𝑎𝑙 − 𝐸𝑖𝑛𝑖𝑡

∆𝑡
 =

1
2𝑚𝑣2 + 𝑚𝑔ℎ − 

1
2𝑚𝑣0

2 − 𝑚𝑔ℎ0

∆𝑡
=  

1
2𝑚(𝑣2 − 𝑣0

2) + 𝑚𝑔(ℎ − ℎ0)

∆𝑡
  

 

 

𝑃𝑎𝑣𝑔 = 

1
2
(4.50 𝑘𝑔) {(17.2

𝑚
𝑠
)
2

− (11.3
𝑚
𝑠
)
2

} + (4.50 𝑘𝑔) (9.80
𝑚
𝑠2) (7.75 𝑚 − 1.50 𝑚)

15.0 𝑠
= 43.6 𝑊 

 

Example: The Space-X Falcon 9 rocket has a mass of 1.48 ×106 kg when loaded with payload destined 

for low-Earth orbit (leo).  Its engines generate 22.8 MN (mega-Newtons) of thrust during their initial 

burn.  When the first stage is jettisoned after 157 s, the rocket is going 1,839 m/s at an altitude of 70.4 

km.  What is the average power output of the engines?  
 

Can we use ‘U = mgh’ at an altitude of 70.4 km?  …No, but we could use F = GmME/r2 and integrate. 
 

Is wind resistance negligible?  …No! 
 

We must use work and not energy. 
 

𝑃𝑎𝑣𝑔 =
∆𝑊

∆𝑡
=  

𝐹𝑑

∆𝑡
 =

(22.8 × 106 𝑁)(70.4 × 103 𝑚) 

157 𝑠
=   1.02 × 1010𝑊  

 

Note:  The largest nuclear power plant in the US, the Palo Verde Nuclear power plant in Arizona has an 

output of 3.94×109 W and is a major source of electric power for the densely populated parts of 

Southern Arizona and Southern California, including Phoenix, Tucson, Los Angeles, and San Diego. 
 

The Space-X Falcon 9 rocket delivers 2.5 times more power than the largest nuclear reactor in the 

country.  

 


